Template:Gaia hypothesis (main)

From The Encyclopedia of Earth
(Redirected from Gaia hypothesis (main))
Jump to: navigation, search

Overview

The Gaia hypothesis, also known as the Gaia theory or the Gaia principle, proposes that organisms interact with their inorganic surroundings on Earth to form a synergistic self-regulating, complex system that helps to maintain and perpetuate the conditions for life on the planet. Topics of interest include how the biosphere and the evolution of life forms affect the stability of global temperature, ocean salinity, oxygen in the atmosphere, the maintenance of a hydrosphere of liquid water and other environmental variables that affect the habitability of Earth.

The hypothesis was formulated by the chemist James Lovelock and co-developed by the microbiologist Lynn Margulis in the 1970s. The hypothesis was initially criticized for being teleological, and contradicting principles of natural selection, but later refinements aligned the Gaia hypothesis with ideas from fields such as Earth system science, biogeochemistry and systems ecology, with Lovelock referring to the "geophysiology" of the Earth. Even so, the Gaia hypothesis continues to attract criticism, and today some scientists consider it to be only weakly supported by, or at odds with, the available evidence. In 2006, the Geological Society of London awarded Lovelock the Wollaston Medal in part for his work on the Gaia hypothesis.

Introduction

Gaian hypotheses suggest that organisms co-evolve with their environment: that is, they "influence their abiotic environment, and that environment in turn influences the biota by Darwinian process". Lovelock (1995) gave evidence of this in his second book, showing the evolution from the world of the early thermo-acido-philic and methanogenic bacteria towards the oxygen-enriched atmosphere today that supports more complex life.

A reduced version of the hypothesis has been called "influential Gaia" in "Directed Evolution of the Biosphere: Biogeochemical Selection or Gaia?" by Andrei G. Lapenis, which states the biota influence certain aspects of the abiotic world, e.g. temperature and atmosphere. This is not the work of an individual but a collective of Russian scientific research that was combined into this peer reviewed publication. It states the coevolution of life and the environment through “micro–forces” and biogeochemical processes. An example is how the activity of photosynthetic bacteria during Precambrian times have completely modified the Earth atmosphere to turn it aerobic, and as such supporting evolution of life (in particular eukaryotic life).

Since barriers existed throughout the Twentieth Century between Russia and the rest of the world, it is only relatively recently that the early Russian scientists who introduced concepts overlapping the Gaia hypothesis have become better known to the Western scientific community. These scientists include:

  1. Piotr Alekseevich Kropotkin (1842–1921)
  2. Rafail Vasil’evich Rizpolozhensky (1847–1918)
  3. Vladimir Ivanovich Vernadsky (1863–1945)
  4. Vladimir Alexandrovich Kostitzin (1886–1963)

Biologists and Earth scientists usually view the factors that stabilize the characteristics of a period as an undirected emergent property or entelechy of the system; as each individual species pursues its own self-interest, for example, their combined actions may have counterbalancing effects on environmental change. Opponents of this view sometimes reference examples of events that resulted in dramatic change rather than stable equilibrium, such as the conversion of the Earth's atmosphere from a reducing environment to an oxygen-rich one at the end of the Archaean and the beginning of the Proterozoic periods.

Less accepted versions of the hypothesis claim that changes in the biosphere are brought about through the coordination of living organisms and maintain those conditions through homeostasis. In some versions of Gaia philosophy, all lifeforms are considered part of one single living planetary being called Gaia. In this view, the atmosphere, the seas and the terrestrial crust would be results of interventions carried out by Gaia through the coevolving diversity of living organisms.

Details

The Gaia hypothesis posits that the Earth is a self-regulating complex system involving the biosphere, the atmosphere, the hydrospheres and the pedosphere, tightly coupled as an evolving system. The hypothesis contends that this system as a whole, called Gaia, seeks a physical and chemical environment optimal for contemporary life.

Gaia evolves through a cybernetic feedback system operated unconsciously by the biota, leading to broad stabilization of the conditions of habitability in a full homeostasis. Many processes in the Earth's surface essential for the conditions of life depend on the interaction of living forms, especially microorganisms, with inorganic elements. These processes establish a global control system that regulates Earth's surface temperature, atmosphere composition and ocean salinity, powered by the global thermodynamic disequilibrium state of the Earth system.

The existence of a planetary homeostasis influenced by living forms had been observed previously in the field of biogeochemistry, and it is being investigated also in other fields like Earth system science. The originality of the Gaia hypothesis relies on the assessment that such homeostatic balance is actively pursued with the goal of keeping the optimal conditions for life, even when terrestrial or external events menace them.

Regulation of global surface temperature

Rob Rohde's palaeotemperature graphs

See also: Paleoclimate

Since life started on Earth, the energy provided by the Sun has increased by 25% to 30%;[15] however, the surface temperature of the planet has remained within the levels of habitability, reaching quite regular low and high margins. Lovelock has also hypothesised that methanogens produced elevated levels of methane in the early atmosphere, giving a view similar to that found in petrochemical smog, similar in some respects to the atmosphere on Titan.[6] This, he suggests tended to screen out ultraviolet until the formation of the ozone screen, maintaining a degree of homeostasis. However, the Snowball Earth[16] research has suggested that "oxygen shocks" and reduced methane levels led, during the Huronian, Sturtian and Marinoan/Varanger Ice Ages, to a world that very nearly became a solid "snowball". These epochs are evidence against the ability of the pre Phanerozoic biosphere to fully self-regulate.

Processing of the greenhouse gas CO2, explained below, plays a critical role in the maintenance of the Earth temperature within the limits of habitability.

The CLAW hypothesis, inspired by the Gaia hypothesis, proposes a feedback loop that operates between ocean ecosystems and the Earth's climate.[17] The hypothesis specifically proposes that particular phytoplankton that produce dimethyl sulfide are responsive to variations in climate forcing, and that these responses lead to a negative feedback loop that acts to stabilise the temperature of the Earth's atmosphere.

Currently the increase in human population and the environmental impact of their activities, such as the multiplication of greenhouse gases may cause negative feedbacks in the environment to become positive feedback. Lovelock had stated that this could bring an accelerated global warming,[18] but he has since stated the effects will likely occur more slowly.[19]

Daisyworld simulations

Plots from a standard black & white Daisyworld simulation

Main article: Daisyworld

James Lovelock and Andrew Watson developed the mathematical model Daisyworld, in which temperature regulation arises from a simple ecosystem consisting of two species whose activity varies in response to the planet's environment. The model demonstrates that beneficial feedback mechanisms can emerge in this "toy world" containing only self-interested organisms rather than through classic group selection mechanisms.[20]

Daisyworld examines the energy budget of a planet populated by two different types of plants, black daisies and white daisies. The colour of the daisies influences the albedo of the planet such that black daisies absorb light and warm the planet, while white daisies reflect light and cool the planet. As the model runs the output of the "sun" increases, meaning that the surface temperature of an uninhabited "gray" planet will steadily rise. In contrast, on Daisyworld competition between the daisies (based on temperature-effects on growth rates) leads to a shifting balance of daisy populations that tends to favour a planetary temperature close to the optimum for daisy growth.

It has been suggested that the results were predictable because Lovelock and Watson selected examples that produced the responses they desired.[21]

Regulation of oceanic salinity

Ocean salinity has been constant at about 3.5% for a very long time.[22] Salinity stability in oceanic environments is important as most cells require a rather constant salinity and do not generally tolerate values above 5%. The constant ocean salinity was a long-standing mystery, because no process counterbalancing the salt influx from rivers was known. Recently it was suggested[23] that salinity may also be strongly influenced by seawater circulation through hot basaltic rocks, and emerging as hot water vents on mid-ocean ridges. However, the composition of seawater is far from equilibrium, and it is difficult to explain this fact without the influence of organic processes. One suggested explanation lies in the formation of salt plains throughout Earth's history. It is hypothesized that these are created by bacterial colonies that fix ions and heavy metals during their life processes.[22]

In the biogeochemical processes of the earth, sources and sinks are the movement of elements. The composition of salt ions within our oceans and seas are: sodium (Na+), chlorine (Cl), sulfate (SO42-), Magnesium (Mg2+), calcium (Ca2+) and potassium (K+). The elements that comprise salinity do not readily change and are a conservative property of seawater.[22] There are many mechanisms that change salinity from a particulate form to a dissolved form and back. The known sources of sodium i.e. salts is when weathering, erosion, and dissolution of rocks transport into rivers and deposit into the oceans.

The Mediterranean Sea as being Gaia's kidney is found (here) by Kenneth J. Hsue a correspondence author in 2001. The "desiccation" of the Mediterranean is the evidence of a functioning kidney. Earlier "kidney functions" were performed during the "deposition of the Cretaceous (South Atlantic), Jurassic (Gulf of Mexico), Permo-Triassic (Europe), Devonian (Canada), Cambrian/Precambrian (Gondwana) saline giants."[24]

Regulation of oxygen in the atmosphere

Levels of gases in the atmosphere in 420,000 years of ice core data from Vostok, Antarctica research station. Current period is at the left.

See also: Geological history of oxygen

The Gaia hypothesis states that the Earth's atmospheric composition is kept at a dynamically steady state by the presence of life.[25] The atmospheric composition provides the conditions that contemporary life has adapted to. All the atmospheric gases other than noble gases present in the atmosphere are either made by organisms or processed by them.

The stability of the atmosphere in Earth is not a consequence of chemical equilibrium. Oxygen is a reactive compound, and should eventually combine with gases and minerals of the Earth's atmosphere and crust. Oxygen only began to persist in the atmosphere in small quantities about 50 million years before the start of the Great Oxygenation Event.[26] Since the start of the Cambrian period, atmospheric oxygen concentrations have fluctuated between 15% and 35% of atmospheric volume.[27] Traces of methane (at an amount of 100,000 tonnes produced per year)[28] should not exist, as methane is combustible in an oxygen atmosphere.

Dry air in the atmosphere of Earth contains roughly (by volume) 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.039% carbon dioxide, and small amounts of other gases including methane. Lovelock originally speculated that concentrations of oxygen above about 25% would increase the frequency of wildfires and conflagration of forests. Recent work on the findings of fire-caused charcoal in Carboniferous and Cretaceous coal measures, in geologic periods when O2 did exceed 25%, has supported Lovelock's contention.[citation needed]

Processing of CO2

See also: Carbon cycle

Gaia scientists see the participation of living organisms in the carbon cycle as one of the complex processes that maintain conditions suitable for life. The only significant natural source of atmospheric carbon dioxide (CO2) is volcanic activity, while the only significant removal is through the precipitation of carbonate rocks.[29] Carbon precipitation, solution and fixation are influenced by the bacteria and plant roots in soils, where they improve gaseous circulation, or in coral reefs, where calcium carbonate is deposited as a solid on the sea floor. Calcium carbonate is used by living organisms to manufacture carbonaceous tests and shells. Once dead, the living organisms' shells fall to the bottom of the oceans where they generate deposits of chalk and limestone.

One of these organisms is Emiliania huxleyi, an abundant coccolithophore algae which also has a role in the formation of clouds.[30] CO2 excess is compensated by an increase of coccolithophoride life, increasing the amount of CO2 locked in the ocean floor. Coccolithophorides increase the cloud cover, hence control the surface temperature, help cool the whole planet and favor precipitations necessary for terrestrial plants.[citation needed] Lately the atmospheric CO2 concentration has increased and there is some evidence that concentrations of ocean algal blooms are also increasing.[31]

Lichen and other organisms accelerate the weathering of rocks in the surface, while the decomposition of rocks also happens faster in the soil, thanks to the activity of roots, fungi, bacteria and subterranean animals. The flow of carbon dioxide from the atmosphere to the soil is therefore regulated with the help of living beings. When CO2levels rise in the atmosphere the temperature increases and plants grow. This growth brings higher consumption of CO2 by the plants, who process it into the soil, removing it from the atmosphere.

History

Precedents

"Earthrise" taken from Apollo 8 on December 24, 1968

The idea of the Earth as an integrated whole, a living being, has a long tradition. The mythical Gaia was the primal Greek goddesspersonifying the Earth, the Greek version of "Mother Nature" (from Ge = Earth, and Aia = PIE grandmother), or the Earth Mother. James Lovelock gave this name to his hypothesis after a suggestion from the novelist William Golding, who was living in the same village as Lovelock at the time (Bowerchalke, Wiltshire, UK). Golding's advice was based on Gea, an alternative spelling for the name of the Greek goddess, which is used as prefix in geology, geophysics and geochemistry.[32] Golding later made reference to Gaia in his Nobel prize acceptance speech.

In the eighteenth century, as geology consolidated as a modern science, James Hutton maintained that geological and biological processes are interlinked.[33] Later, the naturalist and explorer Alexander von Humboldt recognized the coevolution of living organisms, climate, and Earth's crust.[33] In the twentieth century, Vladimir Vernadsky formulated a theory of Earth's development that is now one of the foundations of ecology. The Ukrainian geochemist was one of the first scientists to recognize that the oxygen, nitrogen, and carbon dioxide in the Earth's atmosphere result from biological processes. During the 1920s he published works arguing that living organisms could reshape the planet as surely as any physical force. Vernadsky was a pioneer of the scientific bases for the environmental sciences.[34] His visionary pronouncements were not widely accepted in the West, and some decades later the Gaia hypothesis received the same type of initial resistance from the scientific community.

Also in the turn to the 20th century Aldo Leopold, pioneer in the development of modern environmental ethics and in the movement for wilderness conservation, suggested a living Earth in his biocentric or holistic ethics regarding land.

Another influence for the Gaia hypothesis and the environmental movement in general came as a side effect of the Space Race between the Soviet Union and the United States of America. During the 1960s, the first humans in space could see how the Earth looked as a whole. The photograph Earthrise taken by astronaut William Andersin 1968 during the Apollo 8 mission became, through the Overview Effect an early symbol for the global ecology movement.[36]

Formulation of the hypothesis

James Lovelock, 2005

James Lovelock started defining the idea of a self-regulating Earth controlled by the community of living organisms in September 1965, while working at the Jet Propulsion Laboratory in California on methods of detecting life on Mars.[37][38] The first paper to mention it was Planetary Atmospheres: Compositional and other Changes Associated with the Presence of Life, co-authored with C.E. Giffin.[39] A main concept was that life could be detected in a planetary scale by the chemical composition of the atmosphere. According to the data gathered by the Pic du Midi observatory, planets like Mars or Venus had atmospheres in chemical equilibrium. This difference with the Earth atmosphere was considered to be a proof that there was no life in these planets.

Lovelock formulated the Gaia Hypothesis in journal articles in 1972[1] and 1974,[2] followed by a popularizing 1979 book Gaia: A new look at life on Earth. An article in the New Scientist of February 6, 1975,[40] and a popular book length version of the hypothesis, published in 1979 as The Quest for Gaia, began to attract scientific and critical attention.

Lovelock called it first the Earth feedback hypothesis,[41] and it was a way to explain the fact that combinations of chemicals including oxygen and methane persist in stable concentrations in the atmosphere of the Earth. Lovelock suggested detecting such combinations in other planets' atmospheres as a relatively reliable and cheap way to detect life.

Lynn Margulis

Later, other relationships such as sea creatures producing sulfur and iodine in approximately the same quantities as required by land creatures emerged and helped bolster the hypothesis.[42]

In 1971 microbiologist Dr. Lynn Margulis joined Lovelock in the effort of fleshing out the initial hypothesis into scientifically proven concepts, contributing her knowledge about how microbes affect the atmosphere and the different layers in the surface of the planet.[3] The American biologist had also awakened criticism from the scientific community with her theory on the origin of eukaryotic organelles and her contributions to the endosymbiotic theory, nowadays accepted. Margulis dedicated the last of eight chapters in her book, The Symbiotic Planet, to Gaia. However, she objected to the widespread personification of Gaia and stressed that Gaia is "not an organism", but "an emergent property of interaction among organisms". She defined Gaia as "the series of interacting ecosystems that compose a single huge ecosystem at the Earth's surface. Period". The book's most memorable "slogan" was actually quipped by a student of Margulis': "Gaia is just symbiosis as seen from space".

James Lovelock called his first proposal the Gaia hypothesis but has also used the term Gaia theory. Lovelock states that the initial formulation was based on observation, but still lacked a scientific explanation. The Gaia hypothesis has since been supported by a number of scientific experiments[43] and provided a number of useful predictions.[44] In fact, wider research proved the original hypothesis wrong, in the sense that it is not life alone but the whole Earth system that does the regulating.[12]


Earth seen from Apollo 17. Johnson Space Center, NASA, Photo ID: AS17-148-22727


========

References

  1. J. E. Lovelock (1972). "Gaia as seen through the atmosphere". Atmospheric Environment.
  2. Lovelock, J.E.; Margulis, L. (1974). "Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis". Tellus. Series A. Stockholm: International Meteorological Institute.
  3. Turney, Jon (2003). Lovelock and Gaia: Signs of Life. UK: Icon Books. 
  4. Schwartzman, David (2002). Life, Temperature, and the Earth: The Self-Organizing Biosphere. Columbia University Press.
  5. Gribbin, John (1990), "Hothouse earth: The greenhouse effect and Gaia" (Wiedenfield and Nicholson)
  6. Lovelock, James, (1995) "The Ages of Gaia: A Biography of Our Living Earth" (W.W.Norton & Co)
  7. Kirchner, James W. (2002), "Toward a future for Gaia theory", Climatic Change
  8. Volk, Tyler (2002), "The Gaia hypothesis: fact, theory, and wishful thinking", Climatic Change
  9. Beerling, David (2007). The Emerald Planet: How plants changed Earth's history. Oxford: Oxford University Press.
  10. Lapenis, Andrei G. (2002). "Directed Evolution of the Biosphere: Biogeochemical Selection or Gaia?". The Professional Geographer.
  11. Lovelock, James. The Vanishing Face of Gaia. Basic Books, 2009, p. 255. 
  12. Kleidon, Axel. How does the earth system generate and maintain thermodynamic disequilibrium and what does it imply for the future of the planet?. Article submitted to the Philosophical Transactions of the Royal Society on Thu, 10 Mar 2013