Chemical Engineering

Alkylation in petroleum refining

October 9, 2011, 10:14 pm
Source: OSHA


The alkylation process in petroleum refining combines low-molecular-weight olefins (primarily a mixture of propylene and butylene) with isobutene in the presence of a catalyst, either sulfuric acid or hydrofluoric acid. The product is called alkylate and is composed of a mixture of high-octane, branched-chain paraffinic hydrocarbons. Alkylate is a premium blending stock because it has exceptional antiknock properties and is clean burning. The octane number of the alkylate depends mainly upon the kind of olefins used and upon operating conditions.

Sulfuric Acid Alkylation Process

caption Sulfuric acid alkylation in petroleum refining. Source: Occupational Safety & Health Administration

In cascade type sulfuric acid (H2SO4) alkylation units, the feedstock (propylene, butylene, amylene, and fresh isobutane) enters the reactor and contacts the concentrated sulfuric acid catalyst (in concentrations of 85% to 95% for good operation and to minimize corrosion). The reactor is divided into zones, with olefins fed through distributors to each zone, and the sulfuric acid and isobutanes flowing over baffles from zone to zone.

The reactor effluent is separated into hydrocarbon and acid phases in a settler, and the acid is returned to the reactor. The hydrocarbon phase is hot-water washed with caustic for pH control before being successively depropanized, deisobutanized, and debutanized. The alkylate obtained from the deisobutanizer can then go directly to motor-fuel blending or be rerun to produce aviation-grade blending stock. The isobutane is recycled to the feed.

Hydrofluoric Acid Alylation Process

caption Hydrogen flouride alkylation in petroleum refining. Source: Occupational Safety & Health Administration

Phillips and UOP are the two common types of hydrofluoric acid alkylation processes in use. In the Phillips process, olefin and isobutane feedstock are dried and fed to a combination reactor/settler system. Upon leaving the reaction zone, the reactor effluent flows to a settler (separating vessel) where the acid separates from the hydrocarbons. The acid layer at the bottom of the separating vessel is recycled. The top layer of hydrocarbons (hydrocarbon phase), consisting of propane, normal butane, alkylate, and excess (recycle) isobutane, is charged to the main fractionator, the bottom product of which is motor alkylate. The main fractionator overhead, consisting mainly of propane, isobutane, and hydrogen fluoride (HF), goes to a depropanizer. Propane with trace amount of HF goes to an HF stripper for HF removal and is then catalytically defluorinated, treated, and sent to storage. Isobutane is withdrawn from the main fractionator and recycled to the reactor/settler, and alkylate from the bottom of the main fractionator is sent to product blending.

The UOP process uses two reactors with separate settlers. Half of the dried feedstock is charged to the first reactor, along with recycle and makeup isobutane. The reactor effluent then goes to its settler, where the acid is recycled and the hydrocarbon charged to the second reactor. The other half of the feedstock also goes to the second reactor, with the settler acid being recycled and the hydrocarbons charged to the main fractionator. Subsequent processing is similar to the Phillips process. Overhead from the main fractionator goes to a depropanizer. Isobutane is recycled to the reaction zone and alkylate is sent to product blending.

Disclaimer: This article is taken wholly from, or contains information that was originally published by, the Occupational Safety & Health Administration (OSHA). Topic editors and authors for the Encyclopedia of Earth may have edited its content or added new information. The use of information from the Occupational Safety & Health Administration (OSHA) should not be construed as support for or endorsement by that organization for any new information added by EoE personnel, or for any editing of the original content.



(2011). Alkylation in petroleum refining. Retrieved from


To add a comment, please Log In.