Environment in Focus: Green Revolution

October 12, 2010, 2:43 pm
This content is not assigned to a topic







“Green Revolution[1]” is a public relations term, probably coined in the 1960s by William Gaud, then Director of the U.S. Agency for international Development, that symbolized the modernization of agriculture in less industrialized countries by means of technological change rather than violent “Red Revolution” (Communism)[2].

The essence of the Green Revolution was developing fertilizer-responsive varieties of wheat and rice that would increase national yields of these basic cereals.

With the increased national yields, promoters of this agricultural modernization saw the potential for reducing hunger, poverty, misery, and the potential for violent social upheaval that would threaten the geopolitical interests of the United States and other western powers.

Scientific research that underlay the green revolution is generally dated from the establishment of the Mexican Agricultural Program by the Rockefeller Foundation in 1943, and the successful technological changes were well in place by the 1970s in many parts of Asia and Latin America. Green revolution technology is now almost universally the “normal” way to do agriculture in all parts of the world except in parts of Africa.

Changes in Agriculture Science and Production

For most of human evolutionary history, people were hunter-gatherers. They ate that which grew with little or no human management. Beginning about 40,000 years ago, and culminating about 10,000 years ago, however, people invented and increasingly used active management or “agriculture” to increase the quantity and security of food supplies, including grains, vegetables, and livestock. With this change, often called the “Neolithic Revolution,” modern humans became more sedentary and lived in villages or cities. A farming class tilled the soil and created the potential for large stores of grain that supported an increasingly thriving urban culture. For most of the past 10,000 years, until about 250 years ago, most (probably over 90 percent) people were tillers of the soil, and the primary human occupation was “farmer.”

With the exception of the last 100 years, the primary limitation on agricultural production was the supply of nitrogen to growing plants. The natural nitrogen cycle slowly takes the largely inert gas nitrogen (N2) from the atmosphere and fixes it into soil in forms that can be utilized as nutrients by plants.

Human activities, including the production of nitrogen fertilizers, combustion of fossil fuels, and other activities, however, have substantially increased the amounts of nitrogen fixed per year to levels that rival rates of natural nitrogen fixation. Increased levels of nitrogen fixation have already had effects on the atmosphere, terrestrial ecosystems, and aquatic ecosystems. Most of the effects are troublesome, but the still increasing uses of nitrogen fertilizer clearly have made agricultural ecosystems more productive. Nitrogen fertilizer, in a word, was essential to the productivity gains of the green revolution. As human population continues to expand, expansion of the use of nitrogen fertilizer, too, will occur[3].

Before 1900, the only major interventions people could do to increase supplies of nitrogen for crop plants lay in using manure, crop rotations with leguminous crops like clover, and mining of salts like sodium nitrate and natural materials like bird guano. These extra supplies, however, were expensive and limited in size. People were surrounded by billions of tons of inert nitrogen in the air, but it was impossible to bring this material to service of increasing yields in agriculture.


John Perkins, Ph.D became a Senior Fellow with the National Council for Science and the Environment in January 2010. His major work with NCSE centers on efforts to improve education on energy and the environment, particularly at the undergraduate and master's degree levels.










Conti, A. (2010). Environment in Focus: Green Revolution. Retrieved from http://www.eoearth.org/view/article/159528


To add a comment, please Log In.