Health effects of arsenic


Arsenic is an element that is widely distributed in the Earth's crust. Elemental arsenic is ordinarily a steel grey, metal-like material that occurs naturally. However, arsenic is usually found in the environment combined with such other elements as oxygen, chlorine, and sulfur. Arsenic combined with these elements is called inorganic arsenic. Arsenic combined with carbon and hydrogen is referred to as organic arsenic. Understanding the difference between inorganic and organic arsenic is important because some of the organic forms are less harmful than the inorganic forms.

Most inorganic and organic arsenic compounds are white or colorless powders that do not evaporate. They have no smell, and most have no special taste. You usually cannot tell, therefore, if arsenic is present in your food, water, or air.

Inorganic arsenic occurs naturally in soil and in many kinds of rock, especially in minerals and ores that contain copper or lead. When these ores are heated in smelters, most of the arsenic goes up the stack and enters the air as a fine dust. Smelters may collect this dust and take out the arsenic as a compound called arsenic trioxide (As2O3). However, arsenic is no longer produced in the United States; all of the arsenic used in the United States is imported.

Presently, about 90% of all arsenic produced is used as a preservative for wood to make it resistant to rotting and decay. The preservative is copper chromated arsenic (CCA) and the treated wood is referred to as "pressure-treated". In 2003, U.S. manufacturers of wood preservatives containing arsenic began a voluntary transition from CCA to other wood preservatives that do not contain arsenic in wood products for certain residential uses; for example, play structures, picnic tables, decks, fencing, and boardwalks. This phase-out was completed on December 31, 2003; however, wood treated prior to this date could still be used—and existing structures made with CCA-treated wood would not be affected. CCA-treated wood products continue to be used in industrial applications. It is not known whether, or to what extent, CCA-treated wood products may contribute to exposure of people to arsenic.

In the past, inorganic arsenic compounds were predominantly used as pesticides, primarily on cotton fields and in orchards. Inorganic arsenic compounds can no longer be used in agriculture. However, organic arsenic compounds, namely cacodylic acid, disodium methylarsenate (DSMA), and monosodium methylarsenate (MSMA), are used, as yet, as pesticides—principally on cotton. Some organic arsenic compounds are used as additives in animal feed. Small quantities of arsenic metal are added to other metals to form metal mixtures or alloys with improved properties. The greatest use of arsenic in alloys is in lead-acid batteries for automobiles. Another important use of arsenic compounds is in semiconductors and light-emitting diodes.

Pathways of arsenic to the environment

caption Figure 1: Arsenic Concentrations in Groundwater Resources. (Source: U.S. Geological Survey)

Arsenic occurs naturally in soil and minerals and it therefore may enter the air, water, and land from wind-blown dust and may get into water from runoff and leaching. Volcanic eruptions are another source of arsenic. Arsenic is associated with ores mined for metals, such as copper and lead, and may enter the environment during the mining and smelting of these ores. Small amounts of arsenic also may be released into the atmosphere from [[coal-fired power plants and incinerators because coal and waste products often contain some arsenic.

Arsenic cannot be destroyed in the environment. It can only change its form, or become attached to or separated from particles. It may change its form by reacting with oxygen or other molecules present in air, water, or soil, or by the action of bacteria that live in soil or sediment. Arsenic released from power plants and other combustion processes is usually attached to very small particles. Arsenic contained in wind-borne soil is generally found in larger particles. These particles settle to the ground or are washed out of the air by rain. Arsenic that is attached to very small particles may stay in the air for many days and travel long distances. Many common arsenic compounds can dissolve in water. Thus, arsenic can get into lakes, rivers, or underground water by dissolving in rain or snow or through the discharge of industrial wastes. Some of the arsenic will stick to particles in the water or sediment on the bottom of lakes or rivers, and some will be carried along by the water. Ultimately, most arsenic ends up in the soil or sediment. Although some fish and shellfish take in arsenic—which may build up in tissues—most of this arsenic is in an organic form called arsenobetaine (commonly called "fish arsenic") that is much less harmful.

Exposure to arsenic

Since arsenic is found naturally in the environment, you will be exposed to some arsenic by eating food, drinking water, or breathing air. Also, children may be exposed to arsenic by eating dirt. You may be exposed by skin contact with soil or water that contains arsenic. Analytical methods used by scientists to determine the levels of arsenic in the environment generally do not determine the specific form of arsenic present. Therefore, we do not always know the form of arsenic a person may be exposed to. Similarly, we often do not know what forms of arsenic are present at hazardous waste sites. Some forms of arsenic may be so tightly attached to particles or embedded in minerals that they are not taken up by plants and animals.

The concentration of arsenic in soil varies widely, generally ranging from about 1 to 40 parts of arsenic to a million parts of soil (ppm) with an average level of 3-4 ppm. However, soils in the vicinity of arsenic-rich geological deposits, some mining and smelting sites, or agricultural areas where arsenic pesticides had been applied in the past may contain much higher levels of arsenic. The concentration of arsenic in natural surface and groundwater is generally about 1 part in a billion parts of water (1 ppb), but may exceed 1,000 ppb in mining areas or where arsenic levels in soil are high. Groundwater is far more likely to contain high levels of arsenic than surface water. Surveys of U.S. drinking water indicate that about 80% of water supplies have less than 2 ppb of arsenic, but 2% of supplies exceed 20 ppb of arsenic. Levels of arsenic in food range from about 20 to 140 ppb. However, levels of inorganic arsenic, the form of most concern, are far lower. Levels of arsenic in the air generally range from less than 1 to about 2,000 nanograms (1 nanogram equals a billionth of a gram) of arsenic per cubic meter of air (less than 1-2,000 ng/m3), depending on location, weather conditions, and the level of industrial activity in the area. However, urban areas generally have mean arsenic levels in air ranging from 20 to 30 ng/m3.

You normally take in small amounts of arsenic in the air you breathe, the water you drink, and the food you eat. Of these, food is usually the largest source of arsenic. Seafood contains the greatest amounts of arsenic, but in fish and shellfish, this is mostly in an organic form of arsenic called arseonbetaine that is much less harmful. Some seaweeds may contain arsenic in inorganic forms that may be more harmful. Children are likely to eat small amounts of dust or dirt each day, so this is another way they may be exposed to arsenic. The total amount of arsenic you take in from these sources is generally about 50 micrograms (1 microgram equals one-millionth of a gram) each day. The level of inorganic arsenic (the form of most concern) you take in from these sources is generally about 3.5 microgram/day.

In addition to the normal levels of arsenic in air, water, soil, and food, you could be exposed to higher levels in several ways, such as the following:

  1. Some areas of the United States contain unusually high natural levels of arsenic in rock, and this can lead to unusually high levels of arsenic in soil or water. If you live in an area like this, you could take in elevated amounts of arsenic in drinking water. Children may be taking in arsenic because of hand to mouth contact or eating dirt.
  2. Some hazardous waste sites contain large quantities of arsenic. If the material is not properly disposed of, it can get into surrounding water, air, or soil. If you live near such a site, you could be exposed to elevated levels of arsenic from these media.
  3. If you work in an occupation that involves arsenic production or use (for example, copper or lead smelting, wood treating, pesticide application), you could be exposed to elevated levels of arsenic during your work.
  4. If you saw or sand arsenic-treated wood, you could inhale some of the sawdust into your nose or throat. Similarly, if you burn arsenic-treated wood, you could inhale arsenic in the smoke.
  5. If you live in a formerly agricultural area where arsenic was used on crops, the soil could contain high levels of arsenic.
  6. In the past, several kinds of products used in the home (rat poison, ant poison, weed killer, some types of medicines) had arsenic in them. However, most of these uses of arsenic have ended, so you are not likely to be exposed from home products any longer.

Pathways of arsenic to the body

If you swallow arsenic in water, soil, or food, most of the arsenic may quickly enter into your body. The amount that enters your body will depend on how much you swallow and the kind of arsenic that you swallow. This is the most likely way for you to be exposed near a waste site. If you breathe air that contains arsenic dusts, many of the dust particles settle onto the lining of the lungs. Most of the arsenic in these particles is then taken up from the lungs into the body. You might be exposed in this way near waste sites where arsenic-contaminated soils are allowed to blow into the air, or if you work with arsenic-containing soil or products. If you get arsenic-contaminated soil or water on your skin, only a small amount will go through your skin into your body, so this is usually not of concern.

If you are exposed to arsenic, your liver changes some of this to a less harmful organic form. Both inorganic and organic forms leave your body in your urine. Most of the arsenic will be gone within several days, although some will remain in your body for several months or even longer.

Health effects of arsenic

caption Figure 2: Arsenic lesions on feet (Source: World Bank Arsenic Photo Exhibition)

Scientists use many tests to protect the public from harmful effects of toxic chemicals and to find ways for treating persons who have been harmed.

One way to learn whether a chemical will harm people is to determine how the body absorbs, uses, and releases the chemical. For some chemicals, animal testing may be necessary. Animal testing may also help identify such health effects as cancer or birth defects. Without laboratory animals, scientists would lose a basic method for getting information needed to make wise decisions that protect public health. Scientists have the responsibility to treat research animals with care and compassion. Scientists must comply with strict animal care guidelines because laws today protect the welfare of research animals.

Additionally, there are vigorous national and international efforts to develop alternatives to animal testing. The efforts focus on both in vitro and in silico approaches and methods. For example, the National Toxicology Program (NTP) at the National Institute of Environmental Health Sciences (NIEHS) created the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) in 1998. The role of NICEATM is to serve the needs of high quality, credible science by facilitating development and validation—and regulatory and public acceptance—of innovative, revised test methods that reduce, refine, and replace the use of animals in testing while strengthening protection of human health, animal health and welfare, and the environment. In Europe, similar efforts at developing alternatives to animal based testing are taking place under the aegis of the European Centre for the Validation of Alternative Methods (ECVAM).

Inorganic arsenic has been recognized as a human poison since ancient times, and large oral doses (above 60,000 ppb in food or water) can result in death. If you swallow lower levels of inorganic arsenic (ranging from about 300 to 30,000 ppb in food or water), you may experience irritation of your stomach and intestines, with symptoms such as stomachache, nausea, vomiting, and diarrhea. Other effects you might experience from swallowing inorganic arsenic include decreased production of red and white blood cells, which may cause fatigue, abnormal heart rhythm, blood-vessel damage resulting in bruising, and impaired nerve function causing a "pins and needles" sensation in your hands and feet.

Perhaps the single-most characteristic effect of long-term oral exposure to inorganic arsenic is a pattern of skin changes. These include a darkening of the skin and the appearance of small "corns" or "warts" on the palms, soles, and torso, and are often associated with changes in the blood vessels of the skin (see Figure 2). A small number of the corns may ultimately develop into skin cancer. Swallowing arsenic has also been reported to increase the risk of cancer in the liver, bladder, kidneys, prostate, and lungs. The U.S. Department of Health and Human Services (DHHS) has determined that inorganic arsenic is known to be a human carcinogen. The International Agency for Research on Cancer (IARC) has determined that inorganic arsenic is carcinogenic to humans. The U.S. Environmental Protection Agency (EPA) also has classified inorganic arsenic as a known human carcinogen.

If you breathe high levels of inorganic arsenic, then you are likely to experience a sore throat and irritated lungs. You may also develop some of the skin effects mentioned above. The exposure level that produces these effects is uncertain, but it is probably above 100 micrograms of arsenic per cubic meter (µg/m3) for a brief exposure. Longer exposure at lower concentrations can lead to skin effects, and also to circulatory and peripheral nervous disorders. There are some data suggesting that inhalation of inorganic arsenic may also interfere with normal fetal development, although this is not certain. An important concern is the ability of inhaled inorganic arsenic to increase the risk of lung cancer. This has been seen mostly in workers exposed to arsenic at smelters, mines, and chemical factories, but also in residents living near smelters and arsenical chemical factories. People who live near waste sites with arsenic may have an increased risk of lung cancer as well.

If you have direct skin contact with inorganic arsenic compounds, your skin may become irritated, with some redness and swelling. However, it does not appear that skin contact is likely to lead to any serious internal effects.

Despite all of the adverse health effects associated with inorganic arsenic exposure, there is some evidence that the small amounts of arsenic in the normal diet (10-50 ppb) may be beneficial to your health. This phenomenon is known as hormesis. For example, animals fed a diet with unusually low concentrations of arsenic did not gain weight normally. They also became pregnant less frequently than animals fed a diet containing a normal amount of arsenic. Further, the babies of these animals tended to be smaller than normal, and some died at an early age. However, no cases of arsenic deficiency in humans have ever been reported.

Almost no information is available on the effects of organic arsenic compounds in humans. Studies in animals show that most simple organic arsenic compounds (such as methyl and dimethyl compounds) are less toxic than the inorganic forms and that some complex organic arsenic compounds are virtually non-toxic. However, high doses can produce some of the same effects. Thus, if you are exposed to high doses of an organic arsenic compound, you might develop nerve injury, stomach irritation, or other effects, but this is not known for certain.

Health effects on children

This section discusses potential health effects in humans from exposures during the period from conception to maturity at 18 years of age.

Children are exposed to arsenic in many of the same ways that adults are. Since arsenic is found in the soil, water, food, and air, children may take in arsenic in the air they breathe, the water they drink, and the food they eat. Since children tend to eat or drink less of a variety of foods and beverages than do adults, ingestion of contaminated food or juice or infant formula made with arsenic-contaminated water may represent a significant source of exposure. In addition, since children often play in the dirt and put their hands in their mouths and sometimes intentionally eat dirt, ingestion of contaminated soil may be a more important source of arsenic exposure for children than for adults. In areas of the United States where natural levels of arsenic in the soil and water are high, or in areas in and around contaminated waste sites, exposure of children to arsenic through ingestion of soil and water may be significant. In addition, contact with adults who are wearing clothes contaminated with arsenic (e.g., with dust from copper- or lead-smelting factories, from wood-treating or pesticide application, or from arsenic-treated wood) could be a source of exposure. Because of the tendency of children to taste things that they find, accidental poisoning from ingestion of pesticides is also a possibility. Thus, although most of the exposure pathways for children are the same as those for adults, children may be at a higher risk of exposure because of normal hand-to-mouth activity.

Children who are exposed to arsenic may have many of the same effects as adults, including irritation of the stomach and intestines, blood vessel damage, skin changes, and reduced nerve function. Thus, all health effects observed in adults are of potential concern in children. There is also some evidence that suggests that long-term exposure to arsenic in children may result in lower IQ scores. We do not know if absorption of arsenic from the gut in children differs from adults. There is some information suggesting that children may be less efficient at converting inorganic arsenic to the less harmful organic forms. For this reason, children may be more susceptible to health effects from inorganic arsenic than adults.

There is some evidence that inhaled or ingested arsenic can injure pregnant women or their unborn babies, although the studies are not definitive. Studies in animals show that large doses of arsenic that cause illness in pregnant females can also cause low birth weight, fetal malformations, and even fetal death. Arsenic can cross the placenta and has been found in fetal tissues. Arsenic is found at low levels in breast milk.

Reducing risk of exposure to arsenic

If your doctor finds that you have been exposed to substantial amounts of arsenic, ask whether your children might also have been exposed. Your doctor might need to ask your state health department to investigate.

If you use arsenic-treated wood in home projects, personal protection from exposure to arsenic-containing sawdust may be helpful in limiting exposure of family members. These measures may include dust masks, gloves, and protective clothing. Arsenic-treated wood should never be burned in open fires, or in stoves, residential boilers, or fire places, and should not be composted or used as mulch. If you live in an area with a high level of arsenic in the water or soil, substituting cleaner sources of water and limiting contact with soil (for example, through use of a dense groundcover or thick lawn) would reduce family exposure to arsenic. By paying careful attention to dust and dirt control in the home (air filters, frequent cleaning), you can reduce family exposure to contaminated dirt. Some children eat a lot of dirt. You should prevent your children from eating dirt. You should discourage your children from putting objects in their mouths. Make sure they wash their hands frequently and before eating. Discourage your children from putting their hands in their mouths or engaging in other hand-to-mouth activities. Since arsenic may be found in the home as a pesticide, household chemicals containing arsenic should be stored out of reach of young children to prevent accidental poisonings. Always store household chemicals in their original labeled containers; never store household chemicals in containers that children would find attractive to eat or drink from, such as old soda bottles. Keep your Poison Control Center's number by the phone.

It is sometimes possible to carry arsenic from work on your clothing, skin, hair, tools, or other objects removed from the workplace. This is particularly likely if you work in the fertilizer, pesticide, glass, or copper/lead smelting industries. You may contaminate your car, home, or other locations outside work where children might be exposed to arsenic. You should know about this possibility if you work with arsenic.

Your occupational health and safety officer at work can and should tell you whether chemicals you work with are dangerous and likely to be carried home on your clothes, body, or tools and whether you should be showering and changing clothes before you leave work, storing your street clothes in a separate area of the workplace, or laundering your work clothes at home separately from other clothes. Material safety data sheets (MSDS) for many chemicals used should be found at your place of work, as required by the U.S. Occupational Safety and Health Administration (OSHA) in the U.S. Department of Labor. MSDS information should include chemical names and hazardous ingredients, and important properties, such as fire and explosion data, potential health effects, how you get the chemical(s) in your body, how to properly handle the materials, and what to do in the case of emergencies. Your employer is legally responsible for providing a safe workplace and should freely answer your questions about hazardous chemicals. Your state OSHA-approved occupational safety and health program or OSHA can answer any further questions and help your employer identify and correct problems with hazardous substances. Your state OSHA-approved occupational safety and health program or OSHA will listen to your formal complaints about workplace health hazards and inspect your workplace when necessary. Employees have a right to seek safety and health on the job without fear of punishment.

Medical tests for exposure to arsenic

Several sensitive and specific tests can measure arsenic in your blood, urine, hair, or fingernails—through biomonitoring—and these tests are often helpful in determining if you have been exposed to above-average levels of arsenic in the past. These tests are not usually performed in a doctor's office. They require sending the sample to a testing laboratory.

Measurement of arsenic in your urine is the most reliable means of detecting arsenic exposures that you experienced within the last several days. Most tests measure the total amount of arsenic present in your urine. This can sometimes be misleading, because the nonharmful forms of arsenic in fish and shellfish can give a high reading even if you have not been exposed to a toxic form of arsenic. For this reason, laboratories sometimes use a more complicated test to separate "fish arsenic" from other forms. Because most arsenic leaves your body within a few days, analysis of your urine cannot detect if you were exposed to arsenic in the past. Tests of your hair or fingernails can tell if you were exposed to high levels over the past 6-12 months, but these tests are not very useful in detecting low-level exposures. If high levels of arsenic are detected, this shows that you have been exposed, but unless more is known about when you were exposed and for how long, it is usually not possible to predict whether you will have any harmful health effects.

Further Reading

Disclaimer: This article is taken wholly from, or contains information that was originally published by, the Agency for Toxic Substances and Disease Registry. Topic editors and authors for the Encyclopedia of Earth may have edited its content or added new information. The use of information from the Agency for Toxic Substances and Disease Registry should not be construed as support for or endorsement by that organization for any new information added by EoE personnel, or for any editing of the original content.



(2009). Health effects of arsenic. Retrieved from

1 Comment

To add a comment, please Log In.

Ray Phoenix wrote: 04-05-2013 16:36:58

According to some sources, some factory farmed chickens are fed supplements which contain arsenic. I do not know of possible health effects to humans, but this information should also be covered in this article, I think. I do know that the practice is prohibited by law in some jurisdictions.